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INTRODUCTION

Nonlinear wave processes, including those with
hysteretic nonlinearity, had been much discussed in the
literature. For example, one may note the papers [1, 2]
and the review [3], as well as other publications cited
below.

In connection with the topical problems of construc-
tion, the theory of nonlinear acoustic wave propagation
in media with irreversible deformations, which are typ-
ical of consolidated soil, is of special importance. Such
a theory should describe the propagation process by
simultaneously taking into account the nonlinear relax-
ation and the viscosity of the medium. Solution of the
problem of wave propagation with allowance for both
of the aforementioned effects is rather difficult. The
problem was analyzed in [4], but the analysis was not
completed.

The present paper continues the study described in
[4] and considers a simplified model, in which only the
unloading wave is relaxing. For such a process, the fol-
lowing equation in terms of dimensionless variables
was derived in [4]:
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, the relaxation time is
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small, and precisely this case is considered below.
Under this condition, Eq. (1) can be simplified:
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To describe the unloading process, i.e., the process
characterized by a pressure decrease with time,

 

(3)

 

it is necessary to solve Eq. (1) or (2) with an arbitrary
function 
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. The solution should be sewn together at
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 with the solution describ-
ing the loading wave; then, the functions 
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 and
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 should be determined.
Nonlinear equations (1) and (2) are difficult to solve.

The main difficulty is that the function 

 

P

 

m

 

(

 

z

 

)

 

 is
unknown and is sought for. Another difficulty is that
requirement (3) is preliminarily imposed on the solu-
tion for unloading. Below, two asymptotic approaches
are used to approximately solve the nonlinear equa-
tions.

The first approach (see [5]) only allows the study of
the processes for relatively short tracks or small time
intervals, but it provides the possibility to overcome
many analytical difficulties. The solutions are sought in
the form of polynomials in powers of distance or time.
Conventional methods of treating asymptotic expan-
sions allow the determination of the limiting distances
or intervals within which the aforementioned polyno-
mials can be used for estimating the physical effects.

The second approach is the small-amplitude
approximation method (see [6]), which was first pro-
posed by Stokes. The solutions are constructed in the
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form of expansions in powers of a small parameter pro-
portional to the amplitude. For this approach, the appli-
cability conditions can also be determined.

The first part of the present study is devoted to solv-
ing Eqs. (1) and (2) by the two aforementioned meth-
ods. It is shown that these methods determine the solu-
tion within different intervals of time 

 

θ

 

 and, thus, com-
plement each other.

The second half of the paper studies the solution of
the more general equation

 

(4)

 

which takes into account the viscosity (absorption) of
the medium 

 

Γ

 

. This equation is solved by using the
exact solution to Eq. (4) at 

 

κ

 

 = 0, as well as solutions
close to self-similar ones.

Finally, the last section presents the comparison of
the hysteretic curves corresponding to different values
of the parameters 

 

κ

 

 and 

 

Γ

 

.

SOLUTION IN THE FORM
OF A POLYNOMIAL IN 

 

θ

 

Let us begin with the solution for the unloading
wave. In the unperturbed case (at 

 

κ

 

 = 0), an exact solu-
tion is obtained:

For this solution, condition (3) is evidently satisfied.
According to the aforesaid, we seek the solution to the
perturbed equation (2) in the form of an expansion in
powers of 

 

θ

 

:
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 are to be deter-
mined.

The standard procedure of equating the coefficients
multiplying different powers of 
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 leads to the determi-
nation of 
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 and 
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. For the unloading wave, we
obtain

 

(5)

 

For approximation (5), it is possible to specify the
applicability condition. Estimating the subsequent
terms of the expansion in powers of 

 

θ

 

 that did not
appear in Eq. (5) and assuming that 

 

A

 

 < 

 

z

 

 < 

 

B

 

, we arrive
at the applicability condition

 

(6)

 

for the explicit formula (5).
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For the loading wave, as stated above, the relaxation
effect is ignored. Then, the following exact solution is
valid:

(7)

We sew together solutions (5) and (7) at the point P =
Pm(z), θ = θm(z). Eliminating the function Pm(z) and
using the equality

which is a consequence of Eq. (5), we arrive at the lin-
ear differential equation

This equation determines the function θm(z):

(8)

Formula (8) and the corresponding formula for
Pm(z) are fairly cumbersome. Let us assume that the
interval (A, B) under consideration is sufficiently wide
and that the z coordinate is close to the left-hand end of
this interval:

(9)

Condition (9) allows us to approximately calculate the
integral in Eq. (8) and to obtain finite explicit expres-
sions for θm and Pm:

(10)

If we eliminate the quantity (z–A) from the above
expressions, we arrive at the boundary curve connect-
ing the points of maximum loads for different values of z.
In the leading order, this curve has the form

(11)

Figure 1 shows the loading and unloading lines for
two values of z: z = z1 and z = z2; in addition, Fig. 1 con-
tains the boundary curve given by Eq. (11). According
to Eq. (7), when z2 > z1, the loading line corresponding
to z = z2 lies above the loading line corresponding to
z = z1. According to Eq. (5), the unloading line corre-
sponding to z = z1 goes down steeper than the unloading
line corresponding to z = z2 does.

The formulas derived in this section are valid under
conditions (6) and (9).
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SMALL-AMPLITUDE APPROXIMATION

Now, we solve Eq. (2) by another method: we use
the Stokes small-amplitude ansatz

(12)

Here, u, v, and w are unknown functions. We substitute
this expansion into Eq. (2). The resulting leading-order
equation shows that the function u = u(θ) is indepen-
dent of z.

For the unloading wave, the following conditions
should be satisfied:

(i) u(0) = 0 and (ii) u'(θ) < 0.

Condition (i) means that P becomes equal to zero
simultaneously with θ. Inequality (ii) provides the ful-
fillment of condition (3). To satisfy these requirements,
we set

Then, we assume that the parameters a and κ are of
the same order of smallness and that Pm = aQm. By
determining the subsequent terms of expansion (12),
we arrive at the expression

(13)

Evidently, the formulas constructed above refer to the
case where

(14)

The condition of applicability of Eq. (13) (analogous to
condition (6)) has the form

(15)
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For the loading wave, we choose U = θ/(θ + B), B > 0,
which provides the inequality ∂P/∂θ > 0. Now, calcula-
tions yield

(16)

Sewing together Eqs. (13) and (16) at P = Pm and
θ = θm leads to the elimination of the function Pm(z).
Then, we obtain the equation for the difference τ =
θm(z) – A:

This equation contains a small parameter a and a large
parameter A + B. As a result of asymptotic calculations,
we find that, in the leading order, the following relation
is valid:

(17)

The use of Eqs. (17) and (16) allows us to write down
an explicit expression for Pm(z). From Eq. (13), it fol-
lows that the boundary curve (analogous to curve (11))
is approximately described by the equation

(18)

The loading and unloading lines and the boundary
curve given by Eq. (18) are shown in Fig. 2.

Let us compare the latter results with the results
obtained in the previous section. We assume that, in
both cases, the solutions are considered within the same
time interval A < θ < B. Solution (5) for the unloading
wave corresponds to not-too-large times (see inequal-
ity (6) bounding θ from above). Solution (13) obtained
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Fig. 1. Loading and unloading lines for z1 < z2 and relatively
small times satisfying condition (6). The thick solid line
represents the boundary curve.
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1
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Fig. 2. Loading and unloading lines for z1 < z2 and relatively
large times satisfying conditions (14) and (15). The thick
solid line represents the boundary curve.
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for the unloading wave in another way is valid under
condition (15), which bounds θ from below. Thus, the
two approaches used above yield solutions for different
parts of the interval A < θ < B and, hence, complement
each other.

In both Figs. 1 and 2, an increase in z corresponds to
an increase in θm. This means that, at a greater depth in
the medium, time θm(z), at which the maximum pres-
sure Pm(z) is reached, proves to be greater.

INCLUSION OF VISCOSITY

With allowance for the dimensional viscosity Γ,
Eq. (1) acquires additional terms:

(19)

In this section, we assume that

Γ � 1 (20)

(i.e., the viscosity is small). When the inequality κ � 1
and inequality (20) are simultaneously satisfied, the last
term κΓPθθ in Eq. (19) can be ignored. At the same
time, even under condition (20), the term ΓPθθ is signif-
icant, because it contains the highest-order derivative in
Eq. (19). The condition κ � 1 allows us to represent
Eq. (19) in the form

(21)

which is analogous to Eq. (2).
In the leading order (at κ = 0), we obtain the Burgers

equation

(22)

which has the exact solution

(23)

at any Γ and A.
When

(24)

the expression for P0 satisfies the condition

(25)

and can be used for describing the loading wave. In this
case, it is expedient to take into account only two terms
of the series expansion:

(26)

Under the condition
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expression (23) for P0 satisfies condition (3); i.e., it can
describe the unloading wave. However, because Γ is
small, condition (27) is rather restrictive. Therefore, it
is convenient to construct the solution for unloading in
a different way. Equation (22) has a self-similar solu-
tion:

(28)

while equation (21), correspondingly, has a solution close
to self-similar one. The substitution of solution (28) leads
to the equation

(29)

We construct the solution to Eq. (29) in the form of an
expansion in powers of y. In the leading order, for the
unloading wave, we obtain

(30)

Sewing together Eqs. (26) and (30) at θ = θm, P =
Pm, we arrive at the following explicit formulas in the
leading order:

(31)

(32)

which yields the equation for the boundary curve

(33)

Curve (33) together with typical loading–unloading
lines is shown in Fig. 3.

In connection with Eqs. (26) and (30), it should be
noted that, unlike κ and despite condition (20), the vis-
cosity Γ already affects the principal parts of the
expressions for Pm and θm.
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THE CASE OF A RELATIVELY LARGE 
VISCOSITY

As before, to describe the unloading wave, we solve
Eq. (21). In contrast to the previous section, we assume
that the viscosity Γ is relatively large and apply other
methods for analyzing this equation. To describe the
unloading wave, we use a perturbation of the solution
(23) to the Burgers equation. To describe the loading
wave, the self-similar solution of type (28) is unsuit-
able, because, in this case, it is impossible to satisfy
condition (25). Therefore, for the loading wave, we use
a specific ansatz.

Thus, we seek the unloading wave in the form

where, for P0, we use representation (26). We assume
that Γ is large and that inequality (27) is satisfied. For
the function g, on the basis of Eq. (21) we obtain a lin-
ear inhomogeneous equation:

Solving this equation and performing some calcula-
tions, we arrive at the formula

(34)

Formula (26) for P0 shows that condition (3) is satisfied
in this case.
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To determine the loading wave, we apply the ansatz

where the constants α and c are to be determined. We
obtain

(35)

As in Eq. (7), the variable z belongs to the interval (A, B).

By sewing together Eqs. (34) and (35), we arrive at
the explicit formulas

(36)

(37)

The boundary curve is determined by the approximate
equation

and is represented in Fig. 4.

Comparing Eqs. (31) and (32) (for small values of Γ)
with Eqs. (36) and (37) (for large values of Γ), one can
see that, as the viscosity increases, the principal parts of
the expressions for Pm and θm cease depending on the
relaxation coefficient.
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Fig. 3. Loading and unloading lines for z1 < z2 and a small
viscosity. The thick solid line represents the boundary
curve.
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Fig. 4. Loading and unloading lines for z1 < z2 and a rela-
tively large viscosity. The thick solid line represents the
boundary curve.
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DEPENDENCE OF DENSITY ON PRESSURE. 
HYSTERETIC CURVES

Let us use the dimensionless density and pressure

and the dimensionless parameter χ = /ρ1 . Here, ρ'
and p' are the dimensional density and pressure; ρ1, p1,
and c1 are the values of density, pressure, and velocity
of sound before deformation. The determining equation
from [4] (see Eq. (14) in [4]) can be represented in the
form

(38)

Let us consider the case of κ � 1, when the relax-
ation time TR is large. The integral I is calculated over a
time interval that is small compared to TR. Therefore,
Eq. (38) for the unloading wave takes the form

(39)

At κ = 0, this formula describes the loading wave.

Formula (39) makes it possible to plot the depen-
dences R(P) for both loading and various unloading
processes in an acoustic medium. Let us first consider
the influence of the relaxation parameter κ. The calcu-
lations carried out above show that the quantity Pm
rather weakly depends on κ.

Figure 5 illustrates the loading and various types of
unloading processes in the medium under the effect of
a pulsed signal. In the absence of relaxation, the loading
and unloading processes are represented by curve 1 and
straight line segment 2, respectively. For 0 < κ < 1, the
unloading process is described by curve 3. In this case,
the residual strain

(40)

is smaller than that in the absence of relaxation. Note
that, in the case of κ > 1 (small relaxation times), curve
3 will lie above curve 2.

Proceeding to the inclusion of viscosity Γ, we
assume that Eq. (39) remains valid. Then, the maxi-
mum pressure decreases:
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Correspondingly, the residual strain also decreases
(curve 4 in Fig. 5):

(41)

CONCLUSIONS
Thus, the loading and unloading waves in a relaxing

and dissipative nonlinear medium were investigated.
The problem consisted in integrating the evolution

equations obtained previously in [4]. The main diffi-
culty in solving the problem was related to its nonlin-
earity and, what is most important, to the fact that the
evolution equations contained the unknown maximum
pressure Pm(z), which should be determined as a result
of solving the problem. In addition, expressions for the
pressure P(θ, z) should satisfy requirements (25) and
(3) for loading and unloading, respectively.

The aforementioned evolution equations were
solved using the Stokes small-amplitude approxima-
tion, the new asymptotic small-distance (small-time)
approach [5], the known exact solution (23) to the
Burgers equation, and some special ansatzes, such as
expansion (35). For the asymptotic expansions, the
conditions of their applicability were determined (see,
e.g., inequalities (6) and (15)). The solutions con-
structed with the use of different schemes were found
to belong to different time intervals of the wave process
and, hence, to complement each other.

The application of the methods listed above made it
possible to obtain explicit approximate solutions for
loading and unloading waves in different types of relax-
ing media with different values of the viscosity (dissi-

Rres Γ, 0> εχ2κPm Γ 0>, .=

P

1

R

2

3

4

Pm, Γ > 0 Pm, Γ = 0

Rres, κ > 0

Rres, κ = 0

Rres, Γ > 0

Fig. 5. Dependence of density on pressure for the cases of
loading and different types of unloading: (1) loading with-
out relaxation, (2) unloading without relaxation, (3) unload-
ing at 0 < κ � 1 (Eqs. (5) and (12)), and (4) unloading at
Γ > 0 (Eq. (24)).
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pation) parameter. Explicit expressions were obtained
for the maximum pressure Pm(z) and the corresponding
time θm(z), at which the derivative ∂P/∂θ changes sign.

For all of the cases considered above (Figs. 1–4),
it was found that, when the depth of penetration into
the medium increases, the time θm(z) at which the
maximum pressure Pm(z) is reached also increases.
The mutual influence of the viscosity and relaxation
effects was studied. It was found that, as the viscos-
ity increases, the principal parts of the expressions
for Pm and θm cease to depend on the relaxation coef-
ficient.

Dependences of density on pressure were deter-
mined for different types of media, and the influence of
the type of the medium on the shape of the hysteretic
curve and on the magnitude of the residual strain were
described.
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