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INTRODUCTION

Supershort light pulses are of considerable interest
for basic research (into ultrafast processes in physics,
chemistry, and biology) and applications that involve
designing fiber-optic transmission systems. Among the
methods of generating supershort light pulses, the non-
linear-optical fiberguide techniques prevail (see, for
example, [1, 2]). In the subpicosecond and femtosec-
ond ranges, the nonlinear and dispersion effects should
be taken into account much more accurately than in the
case of longer pulses. There are certain serious theoret-
ical arguments [3–6] indicating that two additional
terms (the nonlinear and dispersion ones) in the nonlin-
ear Schrödinger equation (NSE) enable one to describe
the transition to the subpicosecond range. Note that
these additional terms in the NSE naturally appear in
the asymptotic equation for a pulse envelope [7, 8].

In the femtosecond range, the above improvement
of the NSE is not enough, and the interaction of a super-
short pulse with a medium should be taken into
account. It is conventional to describe this interaction
using the two-level model of the medium. In the sim-
plest case, this model leads to the system of equations
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where the NSE is supplemented with a phenomenolog-
ical equation of relaxation [9, 10]. Here, 
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complex amplitude of the pulse envelope, 
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 is a
real function determining the excitation degree of the
highest of two quantum levels available. For simplicity,
in Eq. (1), we neglect the term describing pulse attenu-
ation during propagation. Being a first-order equation,
relaxation equation (2) does not take into account the
reverse transition to the nonexcited level. Because of
this drawback, the above model can be applied only
when the 

 

t

 

 is not too large. 
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Of all coefficients 

 

β

 

, 

 

γ

 

, 

 

r

 

,

 

 and 

 

σ

 

 involved in Eqs. (1)
and (2), it is most important to study parameter 

 

σ

 

,
which is related to the relaxation time of a medium in
the presence of a supershort pulse field, because the
other coefficients have already been investigated,
though by other means, in the literature. The present
work concentrates mainly on this relaxation term and
its influence on the distortion of the pulse shape.

Since equation (2) can be integrated,

 

(3)

 

the system of equations under consideration reduces to
a single integro-differential equation. However, both
the original system of equations and the integro-differ-
ential equation obtained are too cumbersome to be ana-
lytically investigated in the general case. In what fol-
lows, we assume all coefficients 
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, 

 

γ
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,

 

 and 

 

σ

 

 to be
small. It can be seen that, in this case, Eqs. (1) and (2)
written for the principal-order terms can be replaced
with the perturbed NSE,
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where

Below, our purpose is to analyze the effect of pertur-
bation terms in Eq. (4) (and, especially, the relaxation
term 

 

σ

 

R
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) on the deformation of a solitary pulse. In the
subsequent sections, various asymptotic approaches are
applied (see [8], [11]). These approaches are com-
plementary and based on the fact that the nonperturbed
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equation 

 

S

 

[

 

ψ

 

]

 

 = 0 has the two-parameter soliton
solution

 

(5)

 

Here, parameter 

 

a

 

 describes the soliton amplitude and
inverse width and parameter 

 

b

 

 describes the soliton
velocity (with respect to the general motion at a certain
group velocity).

1. PERTURBATION OF THE SOLITON SOLUTION 
AS A WHOLE

In the principal-order terms, parameters 

 

β

 

, 

 

γ

 

, 

 

r

 

, and

 

σ

 

 affect the perturbation of the soliton solution inde-
pendently. The role of coefficients 

 

β

 

 and 

 

γ

 

 has already
been clarified [8, 11]. Below, we analyze the influence
of relaxation parameter 

 

σ

 

.

We represent the phase and amplitude of the anzatz
as power series in 

 

σ

 

:

 

, (6)

, (7)
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Functions 

 

Φ

 

 and 

 

Q

 

 are real. According to expres-
sion (5), we set

For correction terms 

 

ϕ

 

 and q, we obtain the system of
equations

(9)

The most interesting solution of system (9) corre-
sponds to the case

a @ 1, (10)

when the initial amplitude of the soliton is large.
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If condition (10) is fulfilled, we should introduce
rapidly varying arguments τ = at, ξ = ax, and Q0 = τ –

 into system (9) and set

(11)

This allows us to find that ϕ0 depends on ξ = ax only
and

(12)

An important consequence of the formulas obtained
is the explicit description of the soliton amplitude

(13)

where σ > 0 is the dimensionless relaxation time of the
medium. Even at small values of aσ, formula (13) dem-
onstrates a considerable variations of the pulse shape.

For an unperturbed soliton, the amplitude maximum
is observed at Q0 = 0 and, at the inflexion point,

 =  and  = 1. It follows from expres-
sion (13) that, at σ > 0, the maximum of A(Q0) shifts to
the left, to the point Q0 ≈ –0.2aσ. The right inflexion
point shifts to the right by 0.1aσ and downward by
0.4aσ. The left inflexion point shifts considerably to the
left by 1.4aσ and downward again by 0.4aσ. The
amplitude curve becomes asymmetric, and its total
width decreases.

2. EQUATIONS 
FOR THE SOLITON PARAMETERS

Let us consider another method for analyzing the
influence of perturbation parameters β, γ, r, and σ
involved in Eq. (4) on parameters a and b of unper-
turbed soliton (5). To this end, we write Eq. (4) with a
single small parameter, ε:

(14)

We assume that, during the signal evolution, for-
mula (5), in the principal-order terms, remains
unchanged, with parameters a and b being functions of
a slowly varying argument rather than constants as
before:
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Let us multiply Eq. (14) by complex-conjugate
function ψ* and subtract from the result the complex-
conjugate equation multiplied by ψ. Then, we integrate
the obtained equation with respect to t over the infinite
interval. Finally, we arrive at

(16)

The integral on the left-hand side of Eq. (16) can be cal-
culated with the substitution ψ = ψs (see expression (5)):

.

As a result, the equation for function a(X) takes the
form

. (17)

Next, let us multiply Eq. (14) by  and add the
complex-conjugate equation multiplied by ψt . The
result is integrated again with respect to t over the infi-
nite interval:

It can be shown that the integral on the left-hand side
can be transformed in the following way:

Combining the results obtained and substituting
expression (5) into them, we find the second differential
equation:

(18)

Equations (17) and (18) describe the slow change of
soliton parameters in the process of the propagation of
a perturbed soliton.

3. PERTURBATION 
OF THE SOLITON PARAMETERS

Let us analyze, using Eqs. (17) and (18), the dynam-
ics of soliton parameters a and b under the action of the
perturbation terms in Eq. (4). Note that the integrals

i
d
dx
------ ψ 2

td

∞–

∞

∫ ε Rψ* R*ψ–( ) t.d

∞–

∞

∫=

ψs
2

td

∞–

∞

∫ 2a=

da
dX
-------

1
2i
----- R ψ[ ]ψ * R* ψ*[ ]ψ–( ) td

∞–

∞

∫=

ψt*

i ψxψt* ψx*ψt–( ) td

∞–

∞

∫ ε Rψt* R*ψt+( ) t.d

∞–

∞

∫=

ψxψt* ψx*ψt–( ) td

∞–

∞

∫ 1
2
--- d

dx
------ ψψt* ψ*ψt+( )

∞–

∞

∫ t.d=

d ab( )
dX

-------------- R ψ[ ]ψ t* R* ψ*[ ]ψ t+( ) t.d

∞–

∞

∫–=

Rψ* R*ψ–( ) t and Rψt* R*ψt+( ) td

∞–

∞

∫d

∞–

∞

∫

in formulas (17) and (18) are independent of rapidly
varying argument x. Therefore, we can take x = 0 in the
corresponding integrands.

First, we examine the effect of parameter σ, setting
in Eqs. (17) and (18) ε = σ, x1 = σx, and R = R1 =

−ψ(|ψ|2)t. One can see that  = 0, i.e., the amplitude

parameter of the soliton is independent of the coordi-
nate σx. Equation (18) takes the form

or

Thus,

(19)

It can be seen that the soliton velocity decreases with
the growing relaxation time. It is natural that the prop-
agation process slows down due to relaxation.

A variation of parameter b in expression (5) means
that, during propagation, the term

(20)

is added to the standard soliton ψs .

As for the influence of small parameters r, β, and γ,
we find that, in all three cases, the right-hand sides of
Eqs. (17) and (18) are equal to zero. Thus, in the prin-
cipal-order terms, a variation of parameters r, β, and γ
does not change the soliton parameters.

4. THE CAUCHY PROBLEM
FOR THE EQUATIONS 

OF THE TWO-LEVEL MODEL

Let us use one more technique for studying the
deformation of supershort soliton-like pulses. This
technique (see [11]) allows us to investigate these
deformations only on comparatively short propagation
distances but, on the other hand, allows us to consider
the finite values of perturbation parameters and to over-
come many analytical difficulties.
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To study the role of relaxation parameter σ, we con-
sider the Cauchy problem for the equations

(21)

(22)

with the initial conditions

(23)

(24)

The conditions (23) and (24) agree with formulas (3)
and (5). Since σ is finite, an analysis of the above prob-
lem means a deeper insight into the femtosecond range.

Equations (21) and (22) contain the complex-valued
function

(25)

and positive function n(x, t). For the quantities T, S, and
n, we obtain the system of equations

(26)

with the initial conditions

We search the localized solutions in the form of
power series in x:

(27)

The substitution of Eqs. (27) into the principal-order
terms of Eqs. (26) allows us to find T1(t) and S1(t). We
obtain
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(29)

The agreement of these expressions with formula (5) is
evident. In the linear approximation with respect to x,
parameter σ does not affect the amplitude but yields the
additional term

(30)

in the phase.
The equations of the next approximation with

respect to x allow us to determine functions S2(t), T2(t),
and n1(t) in expansions (27). The expression for T2 con-
tains relaxation parameter σ. After transformations, we
find an expression for the amplitude more exact than
formula (28):

(31)

The second term in this expression is a weak (at
small values of x2a6σ) pulse that has a positive polarity
only at 0 < at ≤ 0.97. Under the influence of this term,
which takes into account the relaxation process, the
total amplitude, at x > 0, decreases and an additional
minimum and a weak maximum appear. In principle,
the second term in expression (31) corresponds to the
second term in formula (20). The exact coincidence is
not possible here because of the different asymptotics
used in Sections 3 and 4. Expressions (20) and (31)
imply the smallness of σ and x, respectively.

Now, let us calculate the distortion of the pulse
phase. This distortion is determined by additional
term (30) in expression (29). Calculating the difference
f(t, 0) – f(t, σ) in the principal-order terms, we obtain

(32)

Formula (32) quantitatively describes the phase
decrease at t > 0, and its increase at t < 0.

5. NUMERICAL SOLUTION 
OF THE CAUCHY PROBLEM

In order to quantitatively refine the results presented
in Section 4, we numerically solved the Cauchy prob-
lem (21)–(24) at x > 0. Such numerical solution is
important because it does not require any assumptions
on the smallness of parameter σ or coordinate x. In cal-
culations, we used an implicit difference scheme (with
weighting factors) and the sweep method. In all the cal-
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culations, the starting parameters of the soliton solu-
tion (5) were

a = 1, b = 0.1. (33)

The first group of calculations deals with the
description of the pulse amplitude depending on dis-
tance x and relaxation parameter σ. Figure 1 demon-
strates the curves at the fixed σ equal to 0.5 and three

different values of x: 2/3, 4/3, and 2. Figure 2 demon-
strates the curves at x = 2 and two different values of σ:
0.5 and 5. The initial pulse amplitude is given for com-
parison in both figures (the heavy line).

The second group of calculations (see Fig. 3) deals
with the description of phase distortions of the soliton
pulse. In this case, at the fixed value of σ = 0.5, we con-
sidered three different values of x: 2/3, 4/3, and 2. The
curves agree with formula (32), which predicts a differ-
ent polarity of the additional relaxation term in the
phase depending on the sign of t, i.e., in the leading and
trailing parts of the pulse.

The results of calculation can easily be related to
dimensional quantities. The relation between dimen-
sional and dimensionless variables of the NSE is well
documented in the literature (see, for example, [3, 9, 10]).
Dimensionless σ and x are coupled with dimensional
quantities by the formulas [10]

. (34)

Here, τ0 is the pulse duration, τ1 is the characteristic
establishment time, z is the actual observation distance,
and |k '' | is the dispersion factor.

Formulas (34) allow us to indicate the dimensional
values corresponding to Figs. 1–3. A realistic value of
τ1 (see [10]) is 6 fs. Then, for example, σ = 0.5 corre-
sponds to τ0 = 12 fs. Similarly, at τ0 = 100 fs and val-
ues (33) of soliton parameters, the value x = 2 corre-
sponds to the distance z = 10 m. At τ0 = 10 fs, the value
x = 2 corresponds to z = 10 cm.

CONCLUSION

To analyze the behavior of soliton-like pulses in the
femtosecond range, three different approaches are
applied: (1) perturbation of the soliton solution as a
whole; (2) perturbation of soliton parameters; and
(3) the analysis of the Cauchy problem with the soliton
initial conditions. The general conclusion is that the
corresponding results not only agree but supplement
each other to a great extent. In view of the special inter-
est attracted by pulse distortion caused by relaxation,
the main focus (of all parameters of the system (1), (2))
is on the influence of parameter σ.

The above approaches show that the pulse ampli-
tude decreases due to relaxation. This decrease is
described by formulas (13) and (31). The variation of
the pulse shape described by formula (13) is consider-
able. There is a noticeable increase in the pulse width.
Formula (31) demonstrates the existence of an addi-
tional pulse induced by medium relaxation. The relax-
ation causes a phase distortion as well. According to
formula (32), the leading part of the pulse is slowed
down (∆ < 0), while the phase velocity of the trailing
part grows. The results obtained using (34) can be
related to the actual dimensional quantities.

σ τ1/τ0, x z/zd, zd τ0
2

k ''
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= = =

1

2
3

4
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–4 0 t7

Fig. 1. Pulse amplitude at the fixed value σ = 0.5 and vari-
ous x: x = (1) 0; (2) 2/3; (3) 4/3; and (4) 2.
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T

Fig. 2. Pulse amplitude at the fixed value of x = 2 and vari-
ous σ: σ = (1) 0; (2) 0.5; and (3) 5.
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Fig. 3. Pulse phase distortion at the fixed value of σ = 0.5
and various x: x = (1) 0; (2) 2/3; (3) 4/3; and (4) 2.
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