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Abstract. As is known, there is a critical magnetic field which separates two principally
different zones for the soliton signal propagation in magnetic chains, the sine–Gordon zone
and the Heisenberg zone. We investigate the fine structure of these signals in a neighborhood
of the critical field with nonzero soliton velocity. Explicit formulas both for the azimuthal
kink and meridional soliton are obtained. These formulas take into account the nonlinear
interaction of soliton structures.
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1. INTRODUCTION

The model in question is a classical (easy plane) isotropic magnetic chain in an external magnetic
field near a critical value. The aim of the present paper is to complete the theoretical investigation
of this model. Earlier investigations were published in [1–3]. The problem is of actual importance
because it is related to inelastic neutron scattering experiments [4, 5] on the planar ferromagnet
CsNiF3.

The problem treated here corresponds to the study of the dimensionless Hamiltonian equations
of motion,

θt = ϕzz cos θ − 2θzϕz sin θ − sin ϕ, (1a)

ϕt = −θzz(cos θ)−1 − ϕ2
z sin θ + λ sin θ + tan θ cos ϕ (1b)

under the boundary conditions ϕζ→−∞ → 0, ϕζ→+∞ → 2π, and θζ→±∞ → 0, where ζ = z − ut.
Here t is time and z is the coordinate along the chain. Equations (1) describe a nonlinear interaction
between an azimuthal kink ϕ and a meridional soliton θ in the presence of an external magnetic field
characterized by the dimensionless parameter λ−1. The desired functions ϕ and θ are the spherical
components for the spin vector. For details concerning system (1), see, e.g., Section 4 of [1].

The following discussion is not limited to zero soliton velocity u (as was the case in earlier works).
This is ensured by introducing the independent variable ζ = z − ut. As is known (see [1, 2]), the
full spectrum of soliton-like excitations in a realistic magnetic chain has three branches in the low
magnetic field regime (sine–Gordon solitons) and only one branch at high magnetic fields beyond
a critical field (the Heisenberg soliton). In the dimensionless notation we use, the critical field in
question has the value λ = 3 in the simplest case u = 0. We denote this critical value by 3 + µ(u)
for u 6= 0.

Our principal goal is to study and describe the fine structure of the soliton signal, i.e., to seek
a solution of equation (1) for fields close to the critical value and for small soliton velocity u 6= 0.
We have two small independent parameters Λ and u in our asymptotic investigation. Here Λ is the
deviation of the magnetic field in comparison with its critical value. Namely, assume that

1/λ = 1/(3 + µ(u) + Λ). (2)

Here we always have u > 0. The value Λ > 0 corresponds to a decrease of the external field as
compared to the critical magnitude, whereas the value Λ < 0 corresponds to an increasing external
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field. We have the range of sine–Gordon solitons for Λ+µ > 0 and the range of Heisenberg solitons
for Λ + µ < 0.

A significant novelty of the present paper as compared with the previous publications is that the
nonzero parameters u and Λ are simultaneously taken into account. Another important novelty is
in a consistent treatment of the nonlinear interaction between the azimuthal kink (AK) and the
meridional soliton (MS). We also widely use asymptotic approaches (see, e.g., [8, 9]).

2. TRANSFORMATION OF THE MOTION EQUATIONS

In the motion equations (1), we pass to the independent variable ζ = z − ut and substitute
expression (2) for λ−1 into (1). We also separate the stationary part Φ(ζ) of the solution of the
motion equations and assume that

ϕ = Φ(ζ) + α(ζ), θ = β (ζ) . (3)

Here
sin

Φ
2

=
1

cosh ζ
, Φζ→−∞ → 0, Φζ→+∞ → 2π. (4)

New equations are of the form

L1α = F1(α, β, ζ, u), (5a)

L2β = F2(α, β, ζ, u, Λ), (5b)

and they contain linear operators L1 = d2/dζ2−(
1− 2cosh−2 ζ

)
and L2 = d2/dζ2−(

4− 6cosh−2 ζ
)
.

The right-hand sides F1 and F2 represent expansions in powers of α, β, and their derivatives,

F1 = −uβ′ − sinh ζ

cosh2 ζ
β2 +

4
cosh ζ

ββ′ +
1
12

sinh ζ

cosh2 ζ
β4 − 2

3 cosh ζ
β3β′ + 2α′ββ′

+
sinh

cosh2 ζ
α2 +

1
2
α′′β2 + O

(
β5, αβ3, α3/2

)
,

F2 =
2u

cosh ζ
+ Λβ − 4

cosh ζ
α′β − 1

6

(
13− 18

cosh2 ζ

)
β3 +

2 sinh ζ

cosh2 ζ
αβ − u

( 1
cosh ζ

β2 − α′
)

− 2
3
Λβ3 + O

(
αβ3, β5, α2β, uβ4, uαβ

)
.

Here and below, we use notation of type O(x, y, z) = O(x) + O(y) + O(z).
In contrast to the corresponding equations in [1, 3], the system of equations (15) takes into

account nonlinear interactions between AK and MS, even at a nonzero soliton velocity.
The operators L1 and L2 have the eigenfunctions A cosh−1 ζ and B cosh−2 ζ, respectively, which

vanish as ζ → ±∞. The constants A and B characterize the excitation degrees of AK and MS.
Therefore, the second step of the transformation of the motion equations is reduced to the relations

α = A cosh−1 ζ + v (ζ) , (6a)

β = B cosh−2 ζ + w (ζ) , (6b)

where v and w are new unknown functions. This leads to the new equations

L1v = F̃1 (v, w, A, B, u, Λ) , (7a)

L2w = F̃2 (v, w, A, B, u, Λ) , (7b)

where the operators L1,2 have the same form as in (5) above. The right-hand sides F̃1,2 are very
cumbersome. The functions v and w must vanish for ζ → ±∞.
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In formulas (6), not only the correction terms v (ζ) and w (ζ) but also the coefficients A and B
of the main terms are unknown. Therefore, it is necessary to determine these coefficients by specific
conditions, i.e., orthogonality conditions between the right-hand sides F̃1,2 and the eigenfunctions
of the operators L1,2. These orthogonality conditions correspond to relations of the following type:

f (A,B, u,Λ) = 0, g (A,B, u,Λ) = 0. (8)

The system of equations (8) describes the very dependence of A and B on the parameters u
and Λ. However, this dependence is very complicated in general. We therefore consider a particular
situation defined by an external field close to its critical value and a small soliton velocity. In this
case, system (8) is more transparent.

3. DEPENDENCE OF THE CRITICAL MAGNETIC FIELD ON THE
SOLITON VELOCITY. DIFFERENT BRANCHES OF SOLUTION

Equations (8) are uniquely solvable with respect to A and B as functions of u and Λ if the
Jacobian

∆ ≡
∣∣∣∣
fA fB
gA gB

∣∣∣∣ (9)

is nonzero. For
∆(u, Λ) = 0, (10)

the unique solvability fails to hold. Note that (10) is a bifurcation equation, and it defines the
branching line on the plane (u, Λ). In other words, this equation gives the desired dependence of
the critical magnetic field (3 + µ(u))−1 on the soliton velocity u, i.e., the function µ(u).

Let us consider the dependence of (10) for small u and Λ. It can readily be seen that the
coefficients A and B in (6) are small as well. However, exact relations for the size of A, B, u, and
Λ near the branching line are not established yet.

The orthogonality conditions (8) become

f = c1uB + c2ΛB2 + c3B
4 + c4AB2 + O

(
uB3, ΛB3, u2, uΛB

)
= 0, (11)

g = d1u + d2ΛB + d3B
3 + O

(
uB2, ΛB2

)
= 0. (12)

Here ci and di are well-defined numerical coefficients, in particular, d1 = π, d2 = π/2, and d3 =
−4/7. The leading-order equation (10) becomes

gB = d2Λ + 3d3B
2 = 0. (13)

To find the branching line, the coefficient B can be taken from the system (12) and (13). This,
together with above value of di, leads to the following new result:

µ(u) = 6(7π)−1/3u2/3 + O
(
u4/3

) ∼= 2.12 u2/3. (14)

Since µ(u) is positive, the critical field decreases as the soliton velocity increases.
For Λ + µ(u) > 0, in connection with formula (2) (see also Fig. 1), we are in the sine–Gordon

regime and have three different solutions for the coefficient B, which determines the amplitude
of the MS, namely,

B1 = − 2u

Λ + µ(u)
+ O

( u2

(Λ + µ)5/2

)
, (15)

B2,3 = ±
√

7π

8
(Λ + µ(u)) +

u

Λ + µ(u)
∼= ±1.66

√
Λ + µ(u) +

u

Λ + µ(u)
. (16)
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Fig. 1. Dependence on the soliton velocity of the
field critical value.

Fig. 2. Typical deformation of AK (3rd branch,
Λ = 0, u = 0.1).

The appearance of three branches of the solution in the sine–Gordon range was predicted in [2].
However, the approaches used in [2] and here are quite different. C. Etrich and H.-J. Mikeska made
their conclusions about branching on the basis of an expression for the spin correlation function. We
obtain explicit formulas (14)–(16) by means of the direct solution of the Hamiltonian equations (1).

For Λ + µ < 0, we deal with the Heisenberg regime (Fig. 1). In this regime only one solution B1
remains.

Also equations (11) and (12) permit to establish relationship between the orders of the desired
values A and B. It follows from equation (11) that the coefficient A in (6a) is of the order of B2 for
the small u and Λ. Therefore, we can now suppose in the final expressions (3) that the stationary
kink Φ(ζ) is the largest, the term β(ζ) is the next in magnitude, and the smallest function α(ζ)
has the order of β2(ζ).

4. BEHAVIOR OF AK NEAR THE CRITICAL VALUE OF THE EXTERNAL FIELD

Equation (5a), under the additional condition that αζ→±∞ → 0, has the following solution
(in the leading order):

α (ζ) =
B2

2
1 + 2 cosh2 ζ

cosh4 ζ
sinh ζ − 2

3
uB

arctan (sinh ζ)
cosh ζ

.

We must substitute α (ζ) into (3), where it gives a correction to the stationary solution Φ (ζ) for
u = 0. Then the final definitive formula for AK is

ϕ = Φ(ζ) +
B2

2
1 + 2 cosh2 ζ

cosh4 ζ
sinh ζ − 2

3
uB

arctan (sinh ζ)
cosh ζ

. (17)

We must substitute here the values of B given by expressions (15) and (16). Then we obtain three
branches of AK in the sine–Gordon range for Λ + µ > 0 and a unique branch B = BH in the
Heisenberg range for Λ + µ < 0.

Formula (17) for AK takes into account the nonlinear action of MS with amplitude B and
the dependence of external field on the velocity u and on the deviation Λ in comparison with the
critical value of the field. In [3], the second term of the right-hand side of (17) was already derived;
however, the coefficient B remained unknown at the time. The third term in this formula, which is
very important, is completely new.

The stationary kink (boldface line on Fig. 2) is deformed because of the nonlinear interactions.
The typical form of this deformation can also be seen on Fig. 2 (thin line), for example, on the
third branch for Λ = 0 and u = 0.1. The nonlinear deformation of the stationary kink is maximal
for ζ = 0.75. Figures 3 and 4 give an idea of the fine structure of the soliton signal. Here we see
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Fig. 3. Essential parts of AK graphs for Λ = 0
and u = 0.1.

Fig. 4. Essential parts of AK graphs for u = 0.1
and Λ = 0.1.

essential parts of AK graphs for different possible branches of solutions and for different values of
the small parameters u and Λ.

The addition of α (ζ) to the stationary solution can change the soliton velocity u in dependence
on the strength of the nonlinearity of the self-action. However, in the case treated here, this effect
is absent as long as α (0) = 0.

The change of the AK-shape is characterized by the derivative

dϕ

dζ

∣∣∣
ζ=0

= 2 +
3
2
B2 − 2

3
uB ≡ l−1. (18)

This derivative describes the velocity of the transition from one spin state to another. It there-
fore defines a dimensionless thickness l of the domain wall as well. If we use (15) and (16), then
formula (18) yields a dependence of this thickness on the values of u and Λ. The analysis of such a
dependence shows that the nonlinear interaction with MS leads to a reduction of the thickness l of
the domain wall for the AK. This effect is appreciable especially in the sine–Gordon regime, and all
the more, notable for the second and third branches of the solutions. The decrease of the thickness
grows appreciably as Λ increases, whereas its dependence on the parameter u is much weaker.

5. BEHAVIOR OF MS NEAR THE CRITICAL VALUE OF THE
EXTERNAL FIELD. PROPERTIES OF BRANCHES OF THE SOLUTION

The properties of MS are defined by formula (6b). We must substitute expressions (15) and (16)
into the main term B cosh−2 ζ of (6b).

The behavior of the three different branches of the solutions for MS in the sine–Gordon range
(Λ + µ > 0) is shown in Figs. 5 and 6. The coefficient B1 determines the behavior of the first
branch. This coefficient is negative, its absolute value is comparatively small, and it increases as
Λ increases and decreases as u increases. The second and the third branches are related to the
coefficients B2 and B3, whose signs are opposite to that of the leading order. The absolute values
of the amplitudes of the branches have higher order of magnitude than the corresponding values
for the first branch.

We can describe the initial behavior of the amplitudes. For u = 0, we have B1 = 0 and
B2,3 = ±1.66Λ1/2. For Λ = 0, we have B1 = −0.95u1/3 and B2,3 = ±2.48u1/3. The corresponding
graphs are shown on Figs. 5 and 6.

In the Heisenberg range (Λ + µ < 0), there is a unique first branch only. In contrast to the
sine–Gordon range, the coefficient B1 is positive here.

The branching of solutions and the formation of fine structures of soliton signal are manifested
maximally when considering the MS. In the case of AK, these effects are masked by the stationary
part Φ (ζ) of the solution.
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Fig. 5. Dependence of the MS amplitude on u for
a fixed Λ > 0.

Fig. 6. Dependence of the MS amplitude on Λ
for a fixed u.

6. CONCLUSIONS

The above formulas (3), (6), and (15)–(17) give an exhaustive description of the behavior of all
the branches of AK and MS for not too large deviations Λ of the external fields from their critical
value and for not too large soliton velocity u. Formulas (6) and (15)–(17) are new and give the
dependence of AK and MS on Λ and u for the first time.

Formula (18) characterizes the change of the kink shape and of the velocity of transition from
one spin state to another and the corresponding decrease of the thickness of the domain of the wall.

Formula (14) describing the dependence of the critical magnetic field on the soliton velocity has
been derived here for the first time.

It is possible to use the above approach to generalize and modify the problem in question.
For example, similar soliton signals in easy-plane systems with small additional anisotropy can be
studied. It is also possible to estimate the energy for the processes under consideration.
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